The contact process with an asymptomatic state
Lamia Belhadji,
Nicolas Lanchier and
Max Mercer
Stochastic Processes and their Applications, 2024, vol. 176, issue C
Abstract:
In order to understand the cost of a potentially high infectiousness of symptomatic individuals or, on the contrary, the benefit of social distancing, quarantine, etc. in the course of an infectious disease, this paper considers a natural variant of the popular contact process that distinguishes between asymptomatic and symptomatic individuals. Infected individuals all recover at rate one but infect nearby individuals at a rate that depends on whether they show the symptoms of the disease or not. Newly infected individuals are always asymptomatic and may or may not show the symptoms before they recover. The analysis of the corresponding mean-field model reveals that, in the absence of local interactions, regardless of the rate at which asymptomatic individuals become symptomatic, there is an epidemic whenever at least one of the infection rates is sufficiently large. In contrast, our analysis of the interacting particle system shows that, when the rate at which asymptomatic individuals become symptomatic is small and the asymptomatic individuals are not infectious, there cannot be an epidemic even when the symptomatic individuals are highly infectious.
Keywords: Contact process; Forest fire model; Coupling; Block construction; Branching process (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001236
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:176:y:2024:i:c:s0304414924001236
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104417
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().