Superdiffusive planar random walks with polynomial space–time drifts
Conrado da Costa,
Mikhail Menshikov,
Vadim Shcherbakov and
Andrew Wade
Stochastic Processes and their Applications, 2024, vol. 176, issue C
Abstract:
We quantify superdiffusive transience for a two-dimensional random walk in which the vertical coordinate is a martingale and the horizontal coordinate has a positive drift that is a polynomial function of the individual coordinates and of the present time. We describe how the model was motivated through an heuristic connection to a self-interacting, planar random walk which interacts with its own centre of mass via an excluded-volume mechanism, and is conjectured to be superdiffusive with a scale exponent 3/4. The self-interacting process originated in discussions with Francis Comets.
Keywords: Random walk; Self-interaction; Excluded volume; Flory exponent; Anomalous diffusion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001261
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:176:y:2024:i:c:s0304414924001261
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104420
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().