Loop-erased partitioning via parametric spanning trees: Monotonicities & 1D-scaling
Luca Avena,
Jannetje Driessen and
Twan Koperberg
Stochastic Processes and their Applications, 2024, vol. 176, issue C
Abstract:
We consider a parametric version of the UST (Uniform Spanning Tree) measure on arbitrary directed weighted finite graphs with tuning (killing) parameter q>0. This is obtained by considering the standard random weighted spanning tree on the extended graph built by adding a ghost state † and directed edges to it, of constant weights q, from any vertex of the original graph. The resulting measure corresponds to a random spanning rooted forest of the graph where the parameter q tunes the intensity of the number of trees as follows: partitions with many trees are favored for q>1, while as q→0, the standard UST of the graph is recovered. We are interested in the behavior of the induced random partition, referred to as Loop-erased partitioning, which gives a correlated cluster model, as the multiscale parameter q∈[0,∞) varies.
Keywords: Graph Laplacian; Random partitions; Loop-erased random walk; Spanning rooted forests; Determinantal processes (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492400142X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:176:y:2024:i:c:s030441492400142x
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104436
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().