A class of space–time discretizations for the stochastic p-Stokes system
Kim-Ngan Le and
Jörn Wichmann
Stochastic Processes and their Applications, 2024, vol. 177, issue C
Abstract:
The main objective of the present paper is to construct a new class of space–time discretizations for the stochastic p-Stokes system and analyze its stability and convergence properties. We derive regularity results for the approximation that are similar to the natural regularity of solutions. One of the key arguments relies on discrete extrapolation that allows us to relate lower moments of discrete maximal processes. We show that, if the generic spatial discretization is constraint conforming, then the velocity approximation satisfies a best-approximation property in the natural distance. Moreover, we present an example such that the resulting velocity approximation converges with rate 1/2 in time and 1 in space towards the (unknown) target velocity with respect to the natural distance. The theory is corroborated by numerical experiments.
Keywords: SPDEs; Stochastic p-stokes system; Power-law fluids; Conforming finite element methods; Convergence rates; Error analysis (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001492
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:177:y:2024:i:c:s0304414924001492
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104443
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().