A finite-dimensional approximation for partial differential equations on Wasserstein space
Mehdi Talbi
Stochastic Processes and their Applications, 2024, vol. 177, issue C
Abstract:
This paper presents a finite-dimensional approximation for a class of partial differential equations on the space of probability measures. These equations are satisfied in the sense of viscosity solutions. The main result states the convergence of the viscosity solutions of the finite-dimensional PDE to the viscosity solutions of the PDE on Wasserstein space, provided that uniqueness holds for the latter, and heavily relies on an adaptation of the Barles & Souganidis monotone scheme (Barles and Souganidis, 1991) to our context, as well as on a key precompactness result for semimartingale measures. We illustrate our convergence result with the example of the Hamilton–Jacobi–Bellman and Bellman–Isaacs equations arising in stochastic control and differential games, and propose an extension to the case of path-dependent PDEs.
Keywords: Viscosity solutions; Wasserstein space; Path-dependent PDEs; Mean field control (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001510
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:177:y:2024:i:c:s0304414924001510
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104445
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().