EconPapers    
Economics at your fingertips  
 

Antithetic multilevel Monte Carlo method for approximations of SDEs with non-globally Lipschitz continuous coefficients

Chenxu Pang and Xiaojie Wang

Stochastic Processes and their Applications, 2024, vol. 178, issue C

Abstract: In the field of computational finance, one is commonly interested in the expected value of a financial derivative whose payoff depends on the solution of stochastic differential equations (SDEs). For multi-dimensional SDEs with non-commutative diffusion coefficients in the globally Lipschitz setting, a kind of one-half order truncated Milstein-type scheme without Lévy areas was recently introduced by Giles and Szpruch (2014), which combined with the antithetic multilevel Monte Carlo (MLMC) gives the optimal overall computational cost O(ϵ−2) for the required target accuracy ϵ. Nevertheless, many nonlinear SDEs in applications have non-globally Lipschitz continuous coefficients and the corresponding theoretical guarantees for antithetic MLMC are absent in the literature. In the present work, we aim to fill the gap and analyze antithetic MLMC in a non-globally Lipschitz setting. First, we propose a family of modified Milstein-type schemes without Lévy areas to approximate SDEs with non-globally Lipschitz continuous coefficients. The expected one-half order of strong convergence is recovered in a non-globally Lipschitz setting, where even the diffusion coefficients are allowed to grow superlinearly. This then helps us to analyze the relevant variance of the multilevel estimator and the optimal computational cost is finally achieved for the antithetic MLMC. Since getting rid of the Lévy areas destroys the martingale properties of the scheme, the analysis of both the convergence rate and the desired variance becomes highly non-trivial in the non-globally Lipschitz setting. By introducing an auxiliary approximation process, we develop non-standard arguments to overcome the essential difficulties. Numerical experiments are provided to confirm the theoretical findings.

Keywords: Stochastic differential equations; Modified Milstein scheme; Non-globally Lipschitz condition; Antithetic multilevel Monte Carlo (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492400173X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:178:y:2024:i:c:s030441492400173x

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2024.104467

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:178:y:2024:i:c:s030441492400173x