Convergence rate analysis in limit theorems for nonlinear functionals of the second Wiener chaos
Gi-Ren Liu
Stochastic Processes and their Applications, 2024, vol. 178, issue C
Abstract:
This paper analyzes the distribution distance between random vectors from the analytic wavelet transform of squared envelopes of Gaussian processes and their large-scale limits. For Gaussian processes with a long-memory parameter below 1/2, the limit combines the second and fourth Wiener chaos. Using a non-Stein approach, we determine the convergence rate in the Kolmogorov metric. When the long-memory parameter exceeds 1/2, the limit is a chi-distributed random process, and the convergence rate in the Wasserstein metric is determined using multidimensional Stein’s method. Notable differences in convergence rate upper bounds are observed for long-memory parameters within (1/2,3/4) and (3/4,1).
Keywords: Analytic wavelet transform; Central limit theorems; Long-range dependence; Malliavin calculus; Multidimensional Stein’s method; Non-central limit theorems; Rate of convergence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001832
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001832
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104477
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().