EconPapers    
Economics at your fingertips  
 

Convergence rate analysis in limit theorems for nonlinear functionals of the second Wiener chaos

Gi-Ren Liu

Stochastic Processes and their Applications, 2024, vol. 178, issue C

Abstract: This paper analyzes the distribution distance between random vectors from the analytic wavelet transform of squared envelopes of Gaussian processes and their large-scale limits. For Gaussian processes with a long-memory parameter below 1/2, the limit combines the second and fourth Wiener chaos. Using a non-Stein approach, we determine the convergence rate in the Kolmogorov metric. When the long-memory parameter exceeds 1/2, the limit is a chi-distributed random process, and the convergence rate in the Wasserstein metric is determined using multidimensional Stein’s method. Notable differences in convergence rate upper bounds are observed for long-memory parameters within (1/2,3/4) and (3/4,1).

Keywords: Analytic wavelet transform; Central limit theorems; Long-range dependence; Malliavin calculus; Multidimensional Stein’s method; Non-central limit theorems; Rate of convergence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001832
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001832

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2024.104477

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001832