A stochastic analysis of particle systems with pairing
Vincent Fromion,
Philippe Robert and
Jana Zaherddine
Stochastic Processes and their Applications, 2024, vol. 178, issue C
Abstract:
Motivated by a general principle governing regulation mechanisms in biological cells, we investigate a general interaction scheme between different populations of particles and specific particles, referred to as agents. Assuming that each particle follows a random path in the medium, when a particle and an agent meet, they may bind and form a pair which has some specific functional properties. Such a pair is also subject to random events and it splits after some random amount of time. In a stochastic context, using a Markovian model for the vector of the number of paired particles, and by taking the total number of particles as a scaling parameter, we study the asymptotic behavior of the time evolution of the number of paired particles. Two scenarios are investigated: one with a large but fixed number of agents, and the other one, the dynamic case, when agents are created at a bounded rate and may die after some time when they are not paired. A first order limit theorem is established for the time evolution of the system in both cases. The proof of an averaging principle of the dynamic case is one of the main contributions of the paper. The impact of dynamical arrivals of agents on the level of pairing of the system is discussed.
Keywords: Averaging Principle; Mathematical Biology; Multi-Timescales Processes (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001868
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001868
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104480
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().