EconPapers    
Economics at your fingertips  
 

Fractional stable random fields on the Sierpiński gasket

Fabrice Baudoin and Céline Lacaux

Stochastic Processes and their Applications, 2024, vol. 178, issue C

Abstract: We define and study fractional stable random fields on the Sierpiński gasket. Such fields are formally defined as (−Δ)−sWK,α, where Δ is the Laplace operator on the gasket and WK,α is a stable random measure. Both Neumann and Dirichlet boundary conditions for Δ are considered. Sample paths regularity and scaling properties are obtained. The techniques we develop are general and extend to the more general setting of the Barlow fractional spaces.

Keywords: Fractional stable fields; Fractional Riesz kernels; Hölder continuity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492400187X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:178:y:2024:i:c:s030441492400187x

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2024.104481

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:178:y:2024:i:c:s030441492400187x