EconPapers    
Economics at your fingertips  
 

Dual process in the two-parameter Poisson–Dirichlet diffusion

Robert C. Griffiths, Matteo Ruggiero, Dario Spanò and Youzhou Zhou

Stochastic Processes and their Applications, 2025, vol. 179, issue C

Abstract: The two-parameter Poisson–Dirichlet diffusion takes values in the infinite ordered simplex and extends the celebrated infinitely-many-neutral-alleles model, having a two-parameter Poisson–Dirichlet stationary distribution. Here we identify a dual process for this diffusion and obtain its transition probabilities. The dual is shown to be given by Kingman’s coalescent with mutation, conditional on a given configuration of leaves. Interestingly, the dual depends on the additional parameter of the stationary distribution only through the test functions and not through the transition rates. After discussing the sampling probabilities of a two-parameter Poisson–Dirichlet partition drawn conditionally on another partition, we use these notions together with the dual process to derive the transition density of the diffusion. Our derivation provides a new probabilistic proof of this result, leveraging on an extension of Pitman’s Pólya urn scheme, whereby the urn is split after a finite number of steps and two urns are run independently onwards. The proof strategy exemplifies the power of duality and could be exported to other models where a dual is available.

Keywords: Pólya urn; Kingman’s coalescent; Lines of descent; Pitman sampling formula; Transition density (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924002084
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002084

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2024.104500

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002084