Existence of maximal solutions for the financial stochastic Stefan problem of a volatile asset with spread
D.C. Antonopoulou,
D. Farazakis and
G. Karali
Stochastic Processes and their Applications, 2025, vol. 179, issue C
Abstract:
In this work, we consider the outer Stefan problem for the short-time prediction of the spread of a volatile asset traded in a financial market. The stochastic equation for the evolution of the density of sell and buy orders is the Heat Equation with a space–time white noise, posed in a moving boundary domain with velocity given by the Stefan condition. This condition determines the dynamics of the spread, and the solid phase [s−(t),s+(t)] defines the bid–ask spread area wherein the transactions vanish. We introduce a reflection measure and prove existence and uniqueness of maximal solutions up to stopping times in which the spread s+(t)−s−(t) stays a.s. non-negative and bounded. For this, we define an approximation scheme, and use some of the estimates of Hambly et al. (2020) for the Green’s function and the associated to the reflection measure obstacle problem. Analogous results are obtained for the equation without reflection corresponding to a signed density.
Keywords: Phase field models; Stefan problem; Volatility; Limit order books; Spreads (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492400214X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:179:y:2025:i:c:s030441492400214x
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104506
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().