Coarsening in zero-range processes
Inés Armendáriz,
Johel Beltrán,
Daniela Cuesta and
Milton Jara
Stochastic Processes and their Applications, 2025, vol. 179, issue C
Abstract:
We prove a fluid limit describing coarsening for zero-range processes on a finite number of sites, with asymptotically constant jump rates. When time and occupation per site are linearly rescaled by the total number of particles, the evolution of the process is described by a piecewise linear trajectory in the simplex indexed by the sites. The linear coefficients are determined by the trace process of the underlying random walk on the subset of non-empty sites, and the trajectory reaches an absorbing configuration in finite time. A boundary of the simplex is called absorbing for the fluid limit if a trajectory started at a configuration in the boundary remains in it for all times. We identify the set of absorbing configurations and characterize the absorbing boundaries.
Keywords: Zero-range process; Fluid limit; Absorption (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924002151
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002151
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104507
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().