Epidemics on critical random graphs with heavy-tailed degree distribution
David Clancy
Stochastic Processes and their Applications, 2025, vol. 179, issue C
Abstract:
We study the susceptible–infected–recovered (SIR) epidemic on a random graph chosen uniformly over all graphs with certain critical, heavy-tailed degree distributions. We prove process level scaling limits for the number of individuals infected on day h on the largest connected components of the graph. The scaling limits contain non-negative jumps corresponding to some vertices of large degree. These weak convergence techniques allow us to describe the height profile of the α-stable continuum random graph (Goldschmidt et al., 2022; Conchon-Kerjan and Goldschmidt, 2023), extending results known in the Brownian case (Miermont and Sen, 2022). We also prove model-independent results that can be used on other critical random graph models.
Keywords: Configuration model; Stable excursions; Random graphs; Lamperti transform; SIR model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924002187
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002187
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104510
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().