EconPapers    
Economics at your fingertips  
 

Evolving privacy: Drift parameter estimation for discretely observed i.i.d. diffusion processes under LDP

Chiara Amorino, Arnaud Gloter and Hélène Halconruy

Stochastic Processes and their Applications, 2025, vol. 181, issue C

Abstract: The problem of estimating a parameter in the drift coefficient is addressed for N discretely observed independent and identically distributed stochastic differential equations (SDEs). This is done considering additional constraints, wherein only public data can be published and used for inference. The concept of local differential privacy (LDP) is formally introduced for a system of stochastic differential equations. The objective is to estimate the drift parameter by proposing a contrast function based on a pseudo-likelihood approach. A suitably scaled Laplace noise is incorporated to meet the privacy requirements. Our key findings encompass the derivation of explicit conditions tied to the privacy level. Under these conditions, we establish the consistency and asymptotic normality of the associated estimator. Notably, the convergence rate is intricately linked to the privacy level, and in some situations may be completely different from the case where privacy constraints are ignored. Our results hold true as the discretization step approaches zero and the number of processes N tends to infinity.

Keywords: Local differential privacy; Parameter drift estimation; High frequency data; Convergence rate; Privacy for processes (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924002655
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002655

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2024.104557

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002655