EconPapers    
Economics at your fingertips  
 

Limit theorems for the site frequency spectrum of neutral mutations in an exponentially growing population

Einar Bjarki Gunnarsson, Kevin Leder and Xuanming Zhang

Stochastic Processes and their Applications, 2025, vol. 182, issue C

Abstract: The site frequency spectrum (SFS) is a widely used summary statistic of genomic data. Motivated by recent evidence for the role of neutral evolution in cancer, we investigate the SFS of neutral mutations in an exponentially growing population. Using branching process techniques, we establish (first-order) almost sure convergence results for the SFS of a Galton–Watson process, evaluated either at a fixed time or at the stochastic time at which the population first reaches a certain size. We finally use our results to construct consistent estimators for the extinction probability and the effective mutation rate of a birth–death process.

Keywords: Site frequency spectrum; Neutral evolution; Infinite sites model; Branching processes; Convergence of stochastic processes (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000043
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:182:y:2025:i:c:s0304414925000043

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2025.104565

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:spapps:v:182:y:2025:i:c:s0304414925000043