Stability of wandering bumps for Hawkes processes interacting on the circle
Zoé Agathe-Nerine
Stochastic Processes and their Applications, 2025, vol. 182, issue C
Abstract:
We consider a population of Hawkes processes modeling the activity of N interacting neurons. The neurons are regularly positioned on the circle [−π,π], and the connectivity between neurons is given by a cosine kernel. The firing rate function is a sigmoid. The large population limit admits a locally stable manifold of stationary solutions. The main result of the paper concerns the long-time proximity of the synaptic voltage of the population to this manifold in polynomial times in N. We show in particular that the phase of the voltage along this manifold converges towards a Brownian motion on a time scale of order N.
Keywords: Multivariate nonlinear Hawkes processes; Mean-field systems; Neural field equation; Spatially extended system; Stationary bumps (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000183
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:182:y:2025:i:c:s0304414925000183
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104577
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().