Berry-Esseen bounds for functionals of independent random variables
Qi-Man Shao and
Zhuo-Song Zhang
Stochastic Processes and their Applications, 2025, vol. 183, issue C
Abstract:
We develop a new Berry–Esseen bound for functionals of independent random variables by introducing a simple form of Chatterjee’s perturbative approach. The main result is applied to the weighted triangle counts in inhomogeneous random graphs, random field Curie–Weiss model, set approximation with random tessellations and random sphere of influence graph models. The rate of convergence is the best possible.
Keywords: Stein’s method; Generalized perturbative approach; Inhomogeneous random graphs; Random field Curie–Weiss model; Set approximation with random tessellations; Random sphere of influence graph models (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000158
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:183:y:2025:i:c:s0304414925000158
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104574
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().