EconPapers    
Economics at your fingertips  
 

Wasserstein asymptotics for Brownian motion on the flat torus and Brownian interlacements

Mauro Mariani and Dario Trevisan

Stochastic Processes and their Applications, 2025, vol. 183, issue C

Abstract: We study the large time behaviour of the optimal transportation cost towards the uniform distribution, for the occupation measure of a stationary Brownian motion on the flat torus in d dimensions, where the cost of transporting a unit of mass is given by a power of the flat distance. We establish a global upper bound, in terms of the limit for the analogue problem concerning the occupation measure of the Brownian interlacement on Rd. We conjecture that our bound is sharp and that our techniques may allow for similar studies on a larger variety of problems, e.g. general diffusion processes on weighted Riemannian manifolds.

Keywords: Optimal transport; Geometric probability; Brownian interlacements (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000365
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:183:y:2025:i:c:s0304414925000365

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2025.104595

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:spapps:v:183:y:2025:i:c:s0304414925000365