The contact process on a graph adapting to the infection
John Fernley,
Peter Mörters and
Marcel Ortgiese
Stochastic Processes and their Applications, 2025, vol. 183, issue C
Abstract:
We find a non-trivial phase transition for the contact process, a simple model for infection without immunity, on a network which reacts dynamically to prevent an epidemic. This network is initially blue distributed as an Erdős–Rényi graph, but is made adaptive via updating in only the infected neighbourhoods, at constant rate. Adaptive dynamics are new to the mathematical contact process literature—in adaptive dynamics the presence of infection can help to prevent the spread and thus monotonicity-based techniques fail. We show, further, that the phase transition in the fast adaptive model occurs at larger infection rate than in the non-adaptive model.
Keywords: Contact process; SIS infection; Adaptive graph dynamics; Epidemic phase transition (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000377
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:183:y:2025:i:c:s0304414925000377
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104596
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().