Symmetry and functional inequalities for stable Lévy-type operators
Lu-Jing Huang and
Tao Wang
Stochastic Processes and their Applications, 2025, vol. 183, issue C
Abstract:
In this paper, we establish the sufficient and necessary conditions for the symmetry of the following stable Lévy-type operator L on R: L=a(x)Δα/2+b(x)ddx,where a is a continuous and strictly positive function, and b is a differentiable function. We then study the criteria for functional inequalities, such as logarithmic Sobolev inequalities, Nash inequalities and super-Poincaré inequalities under the assumption of symmetry. Our approach involves the Orlicz space theory and the estimates of the Green functions.
Keywords: Stable Lévy-type operator; Symmetry; Functional inequality; Orlicz space; Green function (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000419
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:183:y:2025:i:c:s0304414925000419
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104600
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().