Strang splitting for parametric inference in second-order stochastic differential equations
Predrag Pilipovic,
Adeline Samson and
Susanne Ditlevsen
Stochastic Processes and their Applications, 2025, vol. 187, issue C
Abstract:
We address parameter estimation in second-order stochastic differential equations (SDEs), which are prevalent in physics, biology, and ecology. The second-order SDE is converted to a first-order system by introducing an auxiliary velocity variable, which raises two main challenges. First, the system is hypoelliptic since the noise affects only the velocity, making the Euler–Maruyama estimator ill-conditioned. We propose an estimator based on the Strang splitting scheme to overcome this. Second, since the velocity is rarely observed, we adapt the estimator to partial observations. We present four estimators for complete and partial observations, using the full pseudo-likelihood or only the velocity-based partial pseudo-likelihood. These estimators are intuitive, easy to implement, and computationally fast, and we prove their consistency and asymptotic normality. Our analysis demonstrates that using the full pseudo-likelihood with complete observations reduces the asymptotic variance of the diffusion estimator. With partial observations, the asymptotic variance increases as a result of information loss but remains unaffected by the likelihood choice. However, a numerical study on the Kramers oscillator reveals that using the partial pseudo-likelihood for partial observations yields less biased estimators. We apply our approach to paleoclimate data from the Greenland ice core by fitting the Kramers oscillator model, capturing transitions between metastable states reflecting observed climatic conditions during glacial eras.
Keywords: Second-order stochastic differential equations; Hypoellipticity; Partial observations; Strang splitting estimator; Greenland ice core data; Kramers oscillator (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000912
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:187:y:2025:i:c:s0304414925000912
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104650
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().