On Riemann–Liouville type operators, bounded mean oscillation, gradient estimates and approximation on the Wiener space
Stefan Geiss and
Nguyen Tran Thuan
Stochastic Processes and their Applications, 2025, vol. 187, issue C
Abstract:
We discuss in a stochastic framework the interplay between Riemann–Liouville type operators applied to stochastic processes, bounded mean oscillation, real interpolation, and approximation. In particular, we investigate the singularity of gradient processes on the Wiener space arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in terms of bmo-conditions on the fractional integrated gradient. As an application we treat an approximation problem for stochastic integrals on the Wiener space. In particular, we provide a discrete time hedging strategy for the binary option with a uniform local control of the hedging error under a shortfall constraint.
Keywords: Riemann–Liouville operator; Real interpolation; Bounded mean oscillation; Diffusion process; Gradient estimate; Hölder space; Black–Scholes model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000924
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:187:y:2025:i:c:s0304414925000924
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104651
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().