Optimal online detection of parameter changes in two linear models
H. J. Vaman
Stochastic Processes and their Applications, 1985, vol. 20, issue 2, 343-351
Abstract:
Shiryaev has obtained the optimal sequential rule for detecting the instant of a distributional change in an independent sequence using the theory of optimal stopping of Markov processes. This paper considers the problem of sequential detection of certain parameter changes in two dependent sequences: an autoregressive process, and a regression model with serially correlated error terms. It is shown that the rule that is optimal in the sense of minimizing the expected positive delay is the one which declares a change to have occured as soon as the posterior probability of a change crosses a threshold. This rule also permits control of the probability of a false-declaration of change, just as in the independent sequence case.
Keywords: disorder; problem; sequential; detection; autoregressive; process; regression; model; optimal; stopping; change; point (search for similar items in EconPapers)
Date: 1985
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(85)90221-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:20:y:1985:i:2:p:343-351
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().