Ruin problems and myopic portfolio optimization in continuous trading
Knut Aase
Stochastic Processes and their Applications, 1986, vol. 21, issue 2, 213-227
Abstract:
In continuous trading, ruin problems are important for several reasons. ln the first part of the paper a test criterion for bankruptcy is developed. In the present framework one implicitly assumes the investor's wealth to be different from zero, otherwise the model is not well-defined. It is of practical interest to be able to investigate if a certain stationary Markovian financial strategy may lead to ruin. If ruin can occur, its probability is found to satisfy a partial differential equation. In the second part of the paper, a portfolio optimization problem is investigated and solved using Doléans-Dade's exponential formula. The optimality criterion used is to maximize the expected rate of growth. Because of the special structure of the problem, we avoid the Bellman equation. This fact is fortunate, since the Bellman equation is often very complicated to solve analytically.
Keywords: ruin; problems; portfolio; optimization; stochastic; differential; equations; semimartingales; explosions; the; Doleans-Dade; formula (search for similar items in EconPapers)
Date: 1986
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(86)90097-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:21:y:1986:i:2:p:213-227
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().