Asymptotic expansions for the variance of stopping times in nonlinear renewal theory
G. Alsmeyer and
A. Irle
Stochastic Processes and their Applications, 1986, vol. 23, issue 2, 235-258
Abstract:
We treat the problem of finding asymptotic expansions for the variance of stopping times for Wiener processes with positive drift (continuous time case) as well as sums of i.i.d. random variables with positive mean (discrete time case). Carrying over the setting of nonlinear renewal theory to Wiener processes, we obtain an asymptotic expansion up to vanishing terms in the continuous time case. Applying the same methods to sums of i.i.d. random variables, we also provide an expansion in the discrete time case up to terms of order o(b1/2) where the leading term is of order O(b), as b --> [infinity]. The possibly unbounded term is the covariance of nonlinear excess and stopping time.
Keywords: asymptotic; expansions; *; nonlinear; renewal; theory; *; stopping; times (search for similar items in EconPapers)
Date: 1986
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(86)90038-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:23:y:1986:i:2:p:235-258
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().