The mixing property of bilinear and generalised random coefficient autoregressive models
Pham Dinh Tuan
Stochastic Processes and their Applications, 1986, vol. 23, issue 2, 291-300
Abstract:
The paper gives sufficient conditions for the absolute regularity of bilinear models. Our approach is based on their Markovian representation. The above property is a direct consequence of the geometric ergodicity of the Markovian process in this representation. The latter process belongs to what we call the generalised random coefficients autoregressive models. Conditions for the geometric ergodicity and also for the existence of moments for this model are given. Our results generalise that of Feigin and Tweedie.
Keywords: absolute; regularity; *; bilinear; model; *; geometric; ergodicity; *; Markov; chain; on; general; space; *; mixing; *; random; coefficient; autoregressive; model (search for similar items in EconPapers)
Date: 1986
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(86)90042-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:23:y:1986:i:2:p:291-300
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().