The full-information best choice problem with a random number of observations
Zdzislaw Porosinski
Stochastic Processes and their Applications, 1987, vol. 24, issue 2, 293-307
Abstract:
The full-information best choice problem with a random number of observations is considered. N i.i.d. random variables with a known continuous distribution are observed sequentially with the object of selecting the largest. Neither recall nor uncertainty of selection is allowed and one choice must be made. In this paper the number N of observations is random with a known distribution. The structure of the stopping set is investigated. A class of distributions of N (which contains in particular the uniform, negative-binomial and Poisson distributions) is determined, for which the so-called "monotone case" occurs. The theoretical solution for the monotone case is considered. In the case where N is geometric the optimal solution is presented and the probability of winning worked out. Finally, the case where N is uniform is examined. A simple asymptotically optimal stopping rule is found and the asymptotic probability of winning is obtained.
Keywords: optimal; stopping; best; choice; problem; secretary; problem (search for similar items in EconPapers)
Date: 1987
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(87)90020-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:24:y:1987:i:2:p:293-307
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().