Poisson convergence and poisson processes with applications to random graphs
Svante Janson
Stochastic Processes and their Applications, 1987, vol. 26, 1-30
Abstract:
We give a new sufficient condition for convergence to a Poisson distribution of a sequence of sums of dependent variables. The condition allows each summand to depend strongly on a few of the other variables and to depend weakly on the remaining ones. As a consequence we obtain sufficient conditions for the convergence of point processes, constructed as sets of (weakly) dependent random points in some space S, to a Poisson process. The main applications are to random graph theory. In particular, we solve the problem (proposed by Erdös) of finding the size of the first cycle in a random graph.
Keywords: Poisson; limits; Poisson; processes; point; processes; random; graphs; cycles; subgraph; statistics (search for similar items in EconPapers)
Date: 1987
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(87)90048-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:26:y:1987:i::p:1-30
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().