EconPapers    
Economics at your fingertips  
 

Smoothing signals for semimartingales

A. Thavaneswaran

Stochastic Processes and their Applications, 1988, vol. 28, issue 1, 81-89

Abstract: The kernel function and convolution-smoothing methods developed to estimate a probability density function and distribution are essentially a way of smoothing the empirical distribution function. This paper shows now one can generalize these methods to estimate signals for a semimartingale model. A convolution-smoothed estimate is used to obtain an absolutely continuous estimate for an absolutely continuous signal of a semimartingale model. This provides a method of obtaining a convolution-smoothed estimate of the cumulative hazard function in the censored case, an open problem proposed by Mack (Bulletin of Informatics and Cybernetics 21 (1984) 29-35). Asymptotic properties of the convolution-smoothed estimate are discussed in some detail.

Keywords: convolution-smoothing; kernel; functions; semimartingales; signals; smoothing (search for similar items in EconPapers)
Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(88)90066-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:28:y:1988:i:1:p:81-89

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:28:y:1988:i:1:p:81-89