On the extreme order statistics for a stationary sequence
Tailen Hsing
Stochastic Processes and their Applications, 1988, vol. 29, issue 1, 155-169
Abstract:
Suppose that {[xi]j} is a strictly stationary sequence which satisfies the strong mixing condition. Denote by M(k)n the kth largest value of [xi]1,[xi]2,...,[xi]n, and {[upsilon]n(·)} a sequence of normalizing functions for which P[M(1)n[less-than-or-equals, slant][upsilon]n(x)]converges weakly to a continuous distribution G(x). It is shown that if for some k=2,3,...,P[M(k)n[less-than-or-equals, slant][upsilon]n(x)] converges for each x, then there exist probabilities p1,...,pk-1 such that P[M(j)n[less-than-or-equals, slant][upsilon]n(x)] converges weakly to for j=2,...,k, where natural interpretations can be given for the pj. This generalizes certain results due to Dziubdziela (1984) and Hsing, Hüsler and Leadbetter (1986). It is further demonstrated that, with minor modification, the technique can be extended to study the joint limiting distribution of the order statistics. In particular, Theorem 1 of Welsch (1972) is generalized, and some links between the convergence of the order statistics and that of certain point processes are established.
Keywords: extreme; values; point; processes; weak; convergence (search for similar items in EconPapers)
Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(88)90035-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:29:y:1988:i:1:p:155-169
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().