Limit theorems for path-functionals of regenerative processes
Douglas R. Miller
Stochastic Processes and their Applications, 1974, vol. 2, issue 2, 141-161
Abstract:
Regenerative processes were defined and investigated by Smith [12]. These processes have limiting distributions under very mild regularity conditions. In certain applications, such as shot-noise processes and some queueing problems, it is of interest to consider path-functionals of regenerative processes. We seek to extend the nice asymptotic properties of regenerative processes to path-functionals of regenerative processes. We show that these more general processes converge to a "steady-state" process in a certain weak sense. This is applied to show convergence of shot-noise processes. We also present a Blackwell theorem for path-functionals of regenerative processes.
Date: 1974
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(74)90023-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:2:y:1974:i:2:p:141-161
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().