Bifurcations in stochastic dynamical systems with simple singularities
Stanisaw Janeczko and
Eligiusz Wajnryb
Stochastic Processes and their Applications, 1989, vol. 31, issue 1, 71-88
Abstract:
The generalized Langevin stochastic dynamical system is introduced and the stationary probability density for its solution is investigated. The stochastic field is assumed to be singular with a simple singularity, and noise in the control parameters is modelled as dychotomous Markov noises. A classification of bifurcation diagrams for the stationary density probability is obtained. Two examples encountered from physics, the dye laser model and the Verhulst model, are investigated.
Keywords: stochastic; process; dynamical; system; singularity; bifurcation; diagram (search for similar items in EconPapers)
Date: 1989
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(89)90103-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:31:y:1989:i:1:p:71-88
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().