Curvature of the convex hull of planar Brownian motion near its minimum point
Krzysztof Burdzy and
Jaime San Martin
Stochastic Processes and their Applications, 1989, vol. 33, issue 1, 89-103
Abstract:
Let f be a (random) real-valued function whose graph represents the boundary of the convex hull of planar Brownian motion run until time 1 near its lowest point in a coordinate system so that f is non-negative and f(0)=0. The ratio of f(x) and x/logx|| oscillates near 0 between 0 and infinity a.s.
Keywords: Brownian; motion; Brownian; convex; hull (search for similar items in EconPapers)
Date: 1989
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(89)90068-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:33:y:1989:i:1:p:89-103
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().