EconPapers    
Economics at your fingertips  
 

Optimal choice and assignment of the best m of n randomly arriving items

John G. Wilson

Stochastic Processes and their Applications, 1991, vol. 39, issue 2, 325-343

Abstract: A total of n items arrive at random. The decision maker must either select or discard the current item. Ranks must be assigned to items as they are selected. The decision maker's goal is to follow a procedure that maximises the probability of selecting the m best items and assigning them according to their rank order. For m=1 this is the classical secretary problem. Rose (1982) solved the m=2 case. Key mathematical properties for the general m out of n problem are developed: functional equations expressing the general problem in terms of lower dimensional problems and theorems regarding the structure of optimal strategies are provided. A key optimal stopping result for the general problem is provided. Using these results a procedure for solving the above problem for any given m and n is developed. Using this algorithm, explicit formulas--similar in form to those for the well known m=1 and m=2 cases--can be derived. As an example, explicit formulas for the previously unsolved m=3 finite secretary problem are provided.

Keywords: optimal; stopping; secretary; problem; ranking; and; selection (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(91)90086-R
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:39:y:1991:i:2:p:325-343

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:39:y:1991:i:2:p:325-343