Controlled jump processes
Stanley R. Pliska
Stochastic Processes and their Applications, 1975, vol. 3, issue 3, 259-282
Abstract:
Finite and infinite planning horizon Markov decision problems are formulated for a class of jump processes with general state and action spaces and controls which are measurable functions on the time axis taking values in an appropriate metrizable vector space. For the finite horizon problem, the maximum expected reward is the unique solution, which exists, of a certain differential equation and is a strongly continuous function in the space of upper semi-continuous functions. A necessary and sufficient condition is provided for an admissible control to be optimal, and a sufficient condition is provided for the existence of a measurable optimal policy. For the infinite horizon problem, the maximum expected total reward is the fixed point of a certain operator on the space of upper semi-continuous functions. A stationary policy is optimal over all measurable policies in the transient and discounted cases as well as, with certain added conditions, in the positive and negative cases.
Keywords: dynamic; programming; Markov; processes; stochastic; control (search for similar items in EconPapers)
Date: 1975
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(75)90025-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:3:y:1975:i:3:p:259-282
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().