Some time change representations of stable integrals, via predictable transformations of local martingales
Olav Kallenberg
Stochastic Processes and their Applications, 1992, vol. 40, issue 2, 199-223
Abstract:
From the predictable reduction of a marked point process to Poisson, we derive a similar reduction theorem for purely discontinuous martingales to processes with independent increments. Both results are then used to examine the existence of stochastic integrals with respect to stable Lévy processes, and to prove a variety of time change representations for such integrals. The Knight phenomenon, where possibly dependent but orthogonal processes become independent after individual time changes, emerges as a general principle.
Keywords: marked; point; processes; purely; discontinuous; martingales; Poisson; and; sample; processes; Lévy; processes; stochastic; integrals (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(92)90012-F
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:40:y:1992:i:2:p:199-223
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().