EconPapers    
Economics at your fingertips  
 

A non-Markovian model for cell population growth: speed of convergence and central limit theorem

Mathisca C. M. de Gunst and Willem R. van Zwet

Stochastic Processes and their Applications, 1992, vol. 41, issue 2, 297-324

Abstract: In De Gunst (1989) a stochastic model was developed for the growth of a batch culture of plant cells. In this paper the mathematical properties of the model are considered. We investigate the asymptotic behaviour of the population growth as predicted by the model when the initial cell number of population members tends to infinity. In particular it is shown that the total cell number, which is a non-Markovian counting process, converges almost surely, uniformly on the real line to a non-random function and the rate of convergence is established. Moreover, a central limit theorem is proved. Computer simulations illustrate the behaviour of the process. The model is graphically compared with experimental data.

Keywords: stochastic; model; population; growth; non-Markovian; counting; process; almost; sure; converegence; rate; of; convergence; central; limit; theorem (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(92)90129-E
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:41:y:1992:i:2:p:297-324

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:41:y:1992:i:2:p:297-324