A non-Markovian model for cell population growth: speed of convergence and central limit theorem
Mathisca C. M. de Gunst and
Willem R. van Zwet
Stochastic Processes and their Applications, 1992, vol. 41, issue 2, 297-324
Abstract:
In De Gunst (1989) a stochastic model was developed for the growth of a batch culture of plant cells. In this paper the mathematical properties of the model are considered. We investigate the asymptotic behaviour of the population growth as predicted by the model when the initial cell number of population members tends to infinity. In particular it is shown that the total cell number, which is a non-Markovian counting process, converges almost surely, uniformly on the real line to a non-random function and the rate of convergence is established. Moreover, a central limit theorem is proved. Computer simulations illustrate the behaviour of the process. The model is graphically compared with experimental data.
Keywords: stochastic; model; population; growth; non-Markovian; counting; process; almost; sure; converegence; rate; of; convergence; central; limit; theorem (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(92)90129-E
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:41:y:1992:i:2:p:297-324
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().