Multivariate subexponential distributions
Daren B. H. Cline and
Sidney I. Resnick
Stochastic Processes and their Applications, 1992, vol. 42, issue 1, 49-72
Abstract:
We present a formulation of subexponential and exponential tail behavior for multivariate distributions. The definitions are necessarily in terms of vague convergence of Radon measures rather than of ratios of distribution tails. With the proper setting, we show that if all one dimensional marginals of a d-dimensional distribution are subexponential, then the distribution is multivariate subexponential. Known results for univariate subexponential distributions are extended to the multivariate setting. Point process arguments are used for the proofs.
Keywords: subexponentiality; convolution; tails; point; processes; vague; convergence (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(92)90026-M
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:42:y:1992:i:1:p:49-72
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().