Clustering in one-dimensional threshold voter models
Enrique D. Andjel,
Thomas M. Liggett and
Thomas Mountford
Stochastic Processes and their Applications, 1992, vol. 42, issue 1, 73-90
Abstract:
We consider one-dimensional spin systems in which the transition rate is 1 at site k if there are at least N sites in {k-N, k-N + 1, ..., k + N-1, k + N} at which the 'opinion' differs from that at k, and the rate is zero otherwise. We prove that clustering occurs for all N [greater-or-equal, slanted] 1 in the sense that P[[eta]t(k) [not equal to] [eta]t(j)] tends to zero as t tends to [infinity] for every initial configuration. Furthermore, the limiting distribution as t --> [infinity] exists (and is a mixture of the pointmasses on [eta] [reverse not equivalent] 1 and [eta] [reverse not equivalent] 0) if the initial distribution is translation invariant. In case N = 1, the first of these results was proved and a special case of the second was conjectured in a recent paper by Cox and Durrett. Now let D([varrho]) be the limiting density of 1's when the initial distribution is the product measure with density [rho]. If N = 1, we show that D([rho]) is concave on [0, ], convex on [, 1], and has derivative 2 at 0. If N [greater-or-equal, slanted] 2, this derivative is zero.
Keywords: interacting; particle; systems; voter; models; clustering (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(92)90027-N
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:42:y:1992:i:1:p:73-90
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().