Branching random walks on trees
Neal Madras and
Rinaldo Schinazi
Stochastic Processes and their Applications, 1992, vol. 42, issue 2, 255-267
Abstract:
Let p(x, y) be the transition probability of an isotropic random walk on a tree, where each site has d [greater-or-equal, slanted]3 neighbors. We define a branching random walk by letting a particle at site x give birth to a new particle at site y at rate [lambda]dp(x, y), jump to y at rate vdp(x, y), and die at rate [delta]. Let [lambda]2 (respectively, [mu]2) be the infimum of [lambda] such that the process starting with one particle has positive probability of surviving forever (respectively, of having a fixed site occupied at arbitrarily large times). We compute [lambda]2 and [mu]2 exactly, proving that [lambda]2
Keywords: branching; random; walk; tree; biased; voter; model; contact; process; phase; transition (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(92)90038-R
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:42:y:1992:i:2:p:255-267
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().