Adaptive prediction and reverse martingales
Tomas Bjork and
Björn Johansson
Stochastic Processes and their Applications, 1992, vol. 43, issue 2, 191-222
Abstract:
We study prediction problems for models where the underlying probability measure is not known. These problems are intimately connected with time reversal of Markov processes, and optimal predictors are shown to be characterized by being reverse martingales. For a class of diffusions we give a Feynman-Kac representation of the optimal predictor in terms of an associated complex valued diffusion and a concrete Wiener model is studied in detail. We also derive Cramér-Rao inequalities for the prediction error.
Keywords: prediction; time; reversal; martingales; diffusions; point; processes; information; inequalities (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(92)90059-Y
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:43:y:1992:i:2:p:191-222
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().