EconPapers    
Economics at your fingertips  
 

Integration of covariance kernels and stationarity

Rudolf Lasinger

Stochastic Processes and their Applications, 1993, vol. 45, issue 2, 309-318

Abstract: The necessary and sufficient matrix condition of Mitchell, Morris and Ylvisaker (1990) for a stationary Gaussian process to have a specified process as kth derivative is investigated. The mean-square smoothing approach of stationary processes requires integration of covariance functions preserving stationarity. By providing a recursive representation of the involved reproducing kernel Hilbert spaces it is possible to analyse another criterion for k-fold integration of a process. This criterion only contains inequalities for the variances of the integrated processes. If the Hilbert space associated with the covariance function has a special form, which often occurs, then it can be shown that such processes can be integrated arbitrarily often. This is especially the case for the Ornstein-Uhlenbeck process. The results are applied to the linear and the exponential kernel and yield explicit norms in the corresponding reproducing kernel Hilbert spaces for each integration.

Keywords: mean-square; integration; stationary; process; reproducing; kernel; Hilbert; space; Ornstein-Uhlenbeck; process (search for similar items in EconPapers)
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(93)90077-H
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:45:y:1993:i:2:p:309-318

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:45:y:1993:i:2:p:309-318