Probabilistic interpretation of a system of quasilinear elliptic partial differential equations under Neumann boundary conditions
Ying Hu
Stochastic Processes and their Applications, 1993, vol. 48, issue 1, 107-121
Abstract:
A probabilistic interpretation of a system of second order quasilinear elliptic partial differential equations under a Neumann boundary condition is obtained by introducing a kind of backward stochastic differential equations in the infinite horizon case. In the same time, a simple proof for the existence and uniqueness result of the classical solution of that Neumann problem is given.
Keywords: reflecting; Brownian; motion; local; time; backward; stochastic; differential; equation; Neumann; boundary; condition (search for similar items in EconPapers)
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(93)90109-H
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:48:y:1993:i:1:p:107-121
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().