Dernier instant de passage pour l'intégrale du mouvement brownien
Aimé Lachal
Stochastic Processes and their Applications, 1994, vol. 49, issue 1, 57-64
Abstract:
Soit (Bt)t [greater-or-equal, slanted] 0 le mouvement brownien linéaire démarrant de l'origine, [tau]-a,T = max {t [epsilon] [0,T] : [integral operator]t0 Bs ds+x+ty = a} et [tau]+a,T = min {t [greater-or-equal, slanted] T: [integral operator]t0 Bs ds+x+ty = a}. Dans cette note nous déterminons la loi du vecteur aléatoire ([tau]-a,T, [tau]+a,T, B[tau]+a,T).
Date: 1994
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(94)90111-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:49:y:1994:i:1:p:57-64
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().