On the class of Markov chains with finite convergence time
Eduardo J. Subelman
Stochastic Processes and their Applications, 1976, vol. 4, issue 3, 253-259
Abstract:
We study the necessary and sufficient conditions for a finite ergodic Markov chain to converge in a finite number of transitions to its stationary distribution. Using this result, we describe the class of Markov chains which attain the stationary distribution in a finite number of steps, independent of the initial distribution. We then exhibit a queueing model that has a Markov chain embedded at the points of regeneration that falls within this class. Finally, we examine the class of continuous time Markov processes whose embedded Markov chain possesses the property of rapid convergence, and find that, in the case where the distribution of sojourn times is independent of the state, we can compute the distribution of the system at time t in the form of a simple closed expression.
Date: 1976
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(76)90013-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:4:y:1976:i:3:p:253-259
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().