Modifications of the EM algorithm for survival influenced by an unobserved stochastic process
Anatoli I. Yashin and
Kenneth G. Manton
Stochastic Processes and their Applications, 1994, vol. 54, issue 2, 257-274
Abstract:
Let Y=(Yt)t>=0) be an unobserved random process which influences the distribution of a random variable T which can be interpreted as the time to failure. When a conditional hazard rate corresponding to T is a quadratic function of covariates, Y, the marginal survival function may be represented by the first two moments of the conditional distribution of Y among survivors. Such a representation may not have an explicit parametric form. This makes it difficult to use standard maximum likelihood procedures to estimate parameters - especially for censored survival data. In this paper a generalization of the EM algorithm for survival problems with unobserved, stochastically changing covariates is suggested. It is shown that, for a general model of the stochastic failure model, the smoothing estimates of the first two moments of Y are of a specific form which facilitates the EM type calculations. Properties of the algorithm are discussed.
Keywords: Randomly; changing; covariates; Missing; information; principle; Survival; analysis; Unobserved; stochastic; frailty; Random; hazard; EM; algorithm; Incomplete; information; Smoothing; estimates (search for similar items in EconPapers)
Date: 1994
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(94)00012-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:54:y:1994:i:2:p:257-274
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().