EconPapers    
Economics at your fingertips  
 

Rate of Poisson approximation of the number of exceedances of nonstationary normal sequences

J. Hüsler and M. Kratz

Stochastic Processes and their Applications, 1995, vol. 55, issue 2, 301-313

Abstract: It is known that the partial maximum of nonstationary Gaussian sequences converges in distribution and that the number of exceedances of a boundary is asymptotically a Poisson random variable, under certain restrictions. We investigate the rate of Poisson approximation for the number of exceedances. We generalize the result known in the stationary case, showing that the given bound of the rate depends on the largest positive auto-correlation value (less than 1) and the lowest values of the nonconstant boundary. We show that for special cases this bound cannot be improved.

Keywords: Stein-Chen; approximation; Rate; of; convergence; Exceedances; Maxima; Nonstationary; Gaussian; sequence (search for similar items in EconPapers)
Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(94)00036-S
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:55:y:1995:i:2:p:301-313

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:55:y:1995:i:2:p:301-313