EconPapers    
Economics at your fingertips  
 

Utility maximization with partial information

Peter Lakner

Stochastic Processes and their Applications, 1995, vol. 56, issue 2, 247-273

Abstract: In the present paper we address two maximization problems: the maximization of expected total utility from consumption and the maximization of expected utility from terminal wealth. The price process of the available financial assets is assumed to satisfy a system of functional stochastic differential equations. The difference between this paper and the existing papers on the same subject is that here we require the consumption and investment processes to be adapted to the natural filtration of the price processes. This requirement means that the only available information for agents in this economy at a certain time are the prices of the financial assets up to that time. The underlying Brownian motion and the drift process in the system of equations for the asset prices are not directly observable. Particular details will be worked out for the "Bayesian" example, when the dispersion coefficient is a fixed invertible matrix and the drift vector is an Fo-measurable, unobserved random variable with known distribution.

Keywords: Security; price; process; Stochastic; differential; equation; Investment; and; consumption; Utility; maximization (search for similar items in EconPapers)
Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (64)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(94)00073-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:56:y:1995:i:2:p:247-273

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:56:y:1995:i:2:p:247-273