Transition probabilities for the simple random walk on the Sierpinski graph
Owen Dafydd Jones
Stochastic Processes and their Applications, 1996, vol. 61, issue 1, 45-69
Abstract:
Non-Gaussian upper and lower bounds are obtained for the transition probabilities of the simple random walk on the Sierpinski graph, the pre-fractal associated with the Sierpinski gasket. They are of the same form as bounds previously obtained for the transition density of Brownian motion on the Sierpinski gasket, subject to a scale restriction. A comparison with transition density bounds for random walks on general graphs demonstrates that this restriction represents the scale at which the pre-fractal graph starts to look like the fractal gasket.
Keywords: Random; walk; Fractal; Transition; probability (search for similar items in EconPapers)
Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(95)00074-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:61:y:1996:i:1:p:45-69
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().