Estimation for a class of positive nonlinear time series models
Tim C. Brown,
Paul D. Feigin and
Diana L. Pallant
Stochastic Processes and their Applications, 1996, vol. 63, issue 2, 139-152
Abstract:
This paper considers the a symptotic properties of an estimator of a parameter that generalizes the correlation coefficient to a class of nonlinear, non-Gaussian and positive time series models. The models considered are one step Markov chains whose innovations have an infinitely divisible distribution, as do the marginal distributions. The models and their statistical analysis do not degenerate as is the case for some linear models that have been suggested for positive time series data. The asymptotic theory derives from a point process weak convergence argument that uses a regular variation assumption on the left tail of the innovation distribution.
Keywords: Markov; chains; Mathematical; programming; estimator; Weak; convergence; Infinitely; divisible; distribution (search for similar items in EconPapers)
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(96)00071-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:63:y:1996:i:2:p:139-152
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().